
Balanced Allocation and Dictionaries with Tightly Packed

Constant Size Bins

(Extended Abstract)

Martin Dietzfelbinger∗ Christoph Weidling†

July 18, 2005

Abstract

We study a particular aspect of the balanced allocation paradigm (also known as the “two-
choices paradigm”): constant sized bins, packed as tightly as possible. Let d ≥ 1 be fixed, and
assume there are m bins of capacity d each. To each of n ≤ dm balls two possible bins are
assigned at random. How close can dm/n = 1+ε be to 1 so that with high probability each ball
can be put into one of the two bins assigned to it, without any bin overflowing? We show that
ε > (2/e)d−1 is sufficient. If a new ball arrives with two new randomly assigned bins, we wish
to rearrange some of the balls already present in order to accommodate the new ball. We show
that on average it takes constant time to rearrange the balls to achieve this, for ε > γ · βd, for
some constants γ > 0, β < 1. An alternative way to describe the problem is in data structure
language. Generalizing cuckoo hashing (Pagh and Rodler, 2001), we consider a hash table with
m positions, each representing a bucket of capacity d ≥ 1. Keys are assigned to buckets by
two fully random hash functions. How many keys can be placed in these bins, if key x may go
to bin h1(x) or to bin h2(x)? Our results lead to an implementation of a dynamic dictionary
that accommodates n keys in m = (1 + ε)n/d buckets of size d = O(log(1/ε)), so that key x
resides in bucket h1(x) or h2(x). If d ≥ 1 + 3.26 · ln(1/ε), then for a lookup operation only two
hash functions have to be evaluated and two contiguous segments of d memory cells have to be
inspected. The expected time for inserting a new key is constant, for some d = O(log(1/ε)).

1 Introduction: Bounded Balanced Allocation, d-Orientability,
and Blocked Cuckoo Hashing

In this paper, we study a data allocation problem that can be described in different terminologies,
and aspects of which have been considered in different contexts.

In the “balanced allocation paradigm” (also known as the “two-choices paradigm”) we have
n balls and m bins. To each ball two bins are assigned at random. Each ball is to be placed into
one of the two bins assigned to it; the aim is to keep the maximum load in the bins small. Much
work has been devoted to analyzing the online version of this experiment, where the balls arrive one
after the other and are put into a bin upon arrival, and this placement can never be changed later.
Not that much is known about the offline version, where all balls with their two choices are given as

∗Corresponding author, Technische Universität Ilmenau, 98684 Ilmenau, Germany, email:
martin.dietzfelbinger@tu-ilmenau.de

†sd&m AG, 63065 Offenbach am Main, Germany (affiliated with the Technische Universität Ilmenau while this
work was done), email: christoph.weidling@sdm.de

1

input. In particular, it has been known for quite a while that for n = O(m) with high probability1

constant bin size is enough to place all balls. Other authors have considered “dynamic” situations
in which the positions of balls may change in the course of a random process.

In this paper, we ask how well we can utilize the space in the bins if we fix the capacity of the
bins to some number d ≥ 1. That means, given n, we wish to keep the space overhead ε = dm−n

n as
small as possible and still be able to place the balls w.h.p. We show that ε > (2/e)d−1 is sufficient
to guarantee this. We also consider a dynamic version of the problem. Assume that n balls are
placed and a new ball arrives, with two randomly assigned bins. We show that the expected time
needed to rearrange the balls so that the new ball can be accommodated as well is constant, as
long as ε > γ · βd, for some constants γ > 0, β < 1. This implies that the expected time to place
n balls is O(n). No estimates for the density that can be achieved asymptotically for fixed bin size
d larger than some small constant have been known before, although the question arises in several
applications. (Details below.)

It is easy to see that the allocation problem with bounded bin size d is equivalent to a version
of the d-orientability problem [12] for random graphs. We say an undirected graph G = (V,E)
of m nodes and n edges is d-orientable if the edges can be directed in such a way that every node
has outdegree not larger than d. Given a constant d, we ask for upper and lower bounds on the
edge density n

m (certainly < d) so that a graph with n randomly placed edges (including loops
and multiple edges) is d-orientable w.h.p. Also, we ask how long it takes to adapt a given edge
orientation when a new random edge arrives.

Yet another formulation of the same problem can be given in data structure language. We
wish to implement dynamic dictionaries so that constant lookup time is guaranteed. Dynamic
dictionaries store keys from a universe U (possibly together with satellite data) and support the
operations insert, delete, and lookup. Pagh and Rodler’s “cuckoo hashing” method [18] assumes
that each one of n keys is assigned to two locations h1(x) and h2(x) in a hash table of size m,
and can be stored in one of the two locations. Each location has capacity 1. We generalize this
approach by considering buckets of capacity d, for some arbitrary constant d ≥ 1. Our construction
results in the following. Assuming that fully random hash functions are available, we obtain an
implementation of a dynamic dictionary that for given ε > 0 stores n keys in space (1 + ε)n in
such a way that a lookup for x requires evaluating two hash functions and probing two contiguous
blocks of d memory cells. The expected cost of inserting a new key is (1/ε)O(log log(1/ε)). This
compares favorably with the performance of “d-ary cuckoo hashing”, a different generalization of
cuckoo hashing by Fotakis, Pagh, Sanders, and Spirakis [8]. There d = O(log(1/ε)) independent
hash functions are used to achieve a similar space utilization. The access procedure of our scheme
is more local and hence more suited for cache architectures. Experiments support the hope that the
new scheme is competitive with d-ary cuckoo hashing [18] as far as space utilization is concerned,
and allows faster accesses. (The experiments are not part of this submission. The interested reader
may find a description of some of the results in Appendix E.)

Remark 1. For reference, we describe the connection between the hashing formulation and the d-
orientability formulation from [2, 12, 20] in detail. Given is a set S of n keys and two random hash
functions h1, h2. We consider a random (multi)graph Gu = (V,Eu) with labeled edges. The node
set is V = [m] = {0, . . . ,m− 1}, the set of labeled edges is Eu = Eu(S, h1, h2) = {{h1(x), h2(x)} |
x ∈ S}. We say that Gu is d-orientable if the n edges in Eu can be directed in such a way that
each node has outdegree at most d. Assigning such directions to edges is equivalent to storing the
keys in a table with m blocks with maximal load d, as follows: the edge {y, y′} = {h1(x), h2(x)} is
directed from y to y′ if and only if x is stored in block y. Below, any directed version of Gu with

1In the sequel, we write “w.h.p.” for “with high probability”, which means “with probability 1− 1
poly(n)

”.

2

outdegree bounded by d will be called G = (V,E).

Terminology in this paper. We have chosen to describe the algorithms and the analysis in
the language of implementing a dictionary as a hash table with two functions. This also makes
it possible to discuss a new solution to the problem caused by the assumption that fully random
hash functions are available for free, see Section 2.3. However, all results readily translate into the
terminology of the balanced allocation paradigm or the graph orientation paradigm.

1.1 Background and related work

Early contributions to our version of the allocation problem (fixed sized bins) were made in con-
nection with the balanced allocation paradigm. (For a survey of this area, see [14].) In the seminal
paper [1] by Azar, Broder, Karlin, and Upfal it was noted [9] (also see [2]) that if a set of n ≤ 1.67m
balls is allocated to m cells, with two choices per ball, then with high probability the keys can be
placed so that no bin holds more than two balls. This immediately extends to a scheme for storing
n balls in m bins with a maximum load of d = 2 · dn/(1.67m)e ≤ 2 + 1.2 n

m , which for m,n large
corresponds to a space overhead of ε = 0.2 in our notation.

Simultaneously, observations concerning the existence of such placements were made in pa-
pers on the simulation of parallel random access machines on distributed memory machines by
redundantly storing data (e.g., [3, 13]). In particular, it was shown there that a maximum load of
O(1 + n/m) is achievable with high probability, even if for allocating the bins hash functions from
classes described in [23] are used.

Sanders et al. [21, 22] studied the static allocation problem with fixed bin sizes as the combina-
torial abstraction of a scheme called “Randomized Duplicate Allocation (RDA)”, used for storing
data blocks on disks. In [22] it was shown that with high probability a bin size of d = 1 + dn/me is
sufficient (this would correspond to a bound d ≥ 1

ε in our notation). In [21] the question was asked
how close n/m might be to d = dn/me so that still block size d is sufficient. For this, the criterion
given as (2) below was derived and limiting values were determined by inspecting the corresponding
functions for d = 2, 3, . . . , 9 separately. No asymptotic relation between ε and d was derived. We
close this gap, and moreover show how to calculate an assignment in expected linear time where
[21, 22] suggested using more expensive maxflow computations.

In [2] the online version of the case of heavily loaded bins (i.e., n
m → ∞) was studied. In [4]

it was demonstrated that perfect balance (n = dm, with no slack at all) is impossible w.h.p. if
d < γ1 lnn for a suitable constant γ1, while perfect balance is possible w.h.p. if d > γ2 lnn for
some larger constant γ2. For constant d, no better bound than in [22] was given. Also in [4], a
randomized rebalancing procedure was described and analyzed, with running time polynomial in
n.

On the data structures side, the paper by Pagh and Rodler [18] showed that m = (2 + ε)n cells
are enough if each cell may have load 1 and a key x may be stored in one of the locations given
by two hash functions. It is not hard to see, using the threshold for the appearance of other than
unicyclic components in random graphs, that it is impossible to decrease the space below 2n and
still run cuckoo hashing in this original form.

As a remedy for this situation, Fotakis et al. [8] suggested “d-ary cuckoo hashing”. The scheme
they study (in the language of implementing dictionaries) amounts to the balanced allocation
problem with bin size 1 for the case where each ball has d random bins it can go to. Fotakis et
al. [8] show that with n balls and m = (1 + ε)n bins it is necessary to have d = Ω(log(1/ε)) and
sufficient to have d = O(log(1/ε)) for it being possible to place the keys w.h.p., and that some
d = O(log(1/ε)) is sufficient to arrive at an insertion procedure that adds one new ball with d new
random locations in expected constant time. This leads to an implementation of a dictionary for

3

n keys in space (1 + ε)n, where a lookup requires evaluating d hash values and probing d random
locations in the worst case, where d = O(log(1/ε)). Inserting a key takes expected constant
time. From the point of view of efficient implementation of data structures, our result leads to
a comparable space utilization, but has the advantage that only two hash functions have to be
evaluated and two contiguous blocks of d memory cells must be probed in a search. (This approach
is advantageous in architectures with caches; which could be observed also in experiments that we
have conducted. The different time requirements for searches would become clear if we counted the
number of cache faults in the cache-oblivious model [10]. In comparision to d-ary cuckoo hashing
we get a reduction in the number of cache faults by a factor of B where B is the cache block size.
We do not give the obvious details.)

Recently, Panigrahy [19] studied the dynamic version of the allocation problem (in the formu-
lation for dynamic hash tables with insertions) for two choices and bin size d = 2. He established,
by analyzing related branching processes, that inserting keys is possible in expected constant time
as long as n ≤ 1.67m — the same bound as given for the static case in [1]. Our results are derived
by totally different methods; they are not quite as tight for d = 2, but achieve a much better space
utilization already if d is chosen only a little larger.

In the analysis of the static case we start with the condition (2) on d and ε that has been
noted already in [21]. The transformation of this condition into the general relation d > 1 + ln(1/ε)

1−ln 2
by means of calculus has escaped other researchers until this date. Concerning the dynamic case,
where we ask for the cost of adding one ball (or inserting one key), the basic structure of our
analysis is the same as in [8], which is based upon ideas from [15]. We show that the random graph
generated by the n bins as nodes and the two possible locations for the n keys as undirected edges
has certain expansion properties, and derive upper bounds on the probability that a random node
is at a great distance to all nonfull nodes in the directed version of the graph. In comparison to the
analysis in [8], quite a few extra technical obstacles have to be overcome. (For lack of space, not
all details of this analysis are given in this extended abstract; they can be found in the appendix.)

2 Detailed Overview

In this section we describe the data structures, the algorithms, and our results.

2.1 The Static Case

A set S of n keys from the universe U is to be stored. We use an array T [0..m − 1] consisting of
m = n(1 + ε)/d blocks (subarrays) of d cells each. (For convenience we assume that n(1 + ε)/d
is an integer.) Inside each block we store up to d keys sequentially. Given two hash functions
h1, h2 : U → [m], we say that h1, h2 are suitable for S and d if it is possible to store each key x from
S in one of the blocks h1(x), h2(x) without any block receiving more than d keys. If the keys from
S are stored according to h1, h2, a lookup procedure is obvious, which involves evaluating two hash
values and searching two blocks. — Our first result:

Theorem 1. Let ε > 0 be arbitrary. Assume that d ≥ 1 + ln(1/ε)
1−ln 2 . Let n be sufficiently large,

let S ⊆ U be an arbitrary set of n keys, and let T be a table with m blocks of size d each, where
dm ≥ (1 + ε)n. Further assume that h1, h2 : U → [m] are fully random hash functions. Then with
probability 1−O(1/md−1) the functions h1, h2 are suitable for S and d.

Remark. The bound on d stated in the theorem is not very far away from the true threshold.
Indeed, using standard methods the following can be shown by estimating the number of buckets

4

hit by exactly d − 1 keys: There is a constant c such that if d + c ln d < ln(1/ε)
1−ln 2 then w.h.p. h1, h2

are not suitable for S.
The proof of Theorem 1 is outlined in Section 3. It starts from a known characterization of

h1, h2 being suitable [21, 22], but in contrast to all earlier approaches carries through a full analysis
of the resulting estimates to obtain a closed bound valid for all d.

2.2 Updates: The Cuckoo Insertion Procedure

Assume n keys are stored in the table T according to h1, h2, with blocks of size d.
Inserting a new key x can best be described in terms of the directed graph G from Remark 1.

In G, find a directed path y0, y1, . . . , y` with y0 ∈ {h1(x), h2(x)} and y` a node that is “free”, i.e.,
has outdegree smaller than d. (This means that block y` contains an empty cell.) The edges that
form the path correspond to keys x1, . . . , x` such that xi is stored in yi−1, but may be stored in yi.
After moving xi from yi−1 to yi, for 1 ≤ i ≤ ` (this corresponds to flipping the edges on the path),
node (block) y0 is free, and hence we can store x there.

We call a path y0, y1, . . . , y` as described an “augmenting path” for G and x.
It is very easy to see that if the keys from S ∪{x} can be stored according to h1, h2 at all, then

there is an augmenting path. So the problem is to find a short augmenting path fast. As proposed
in [8], a simple approach for this is breadth-first-search (BFS) in G, starting from {h1(x), h2(x)}.
The time for this is proportional to the number of edges probed before a free node is found. Since
the nodes in the part of G that is searched have outdegree d, this number is not larger than
2(d + d2 + · · · + d`) < 4d`, where ` is the length of a shortest path from {h1(x), h2(x)} to a free
node. Thus we will have to analyze (the distribution of) the distance between {h1(x), h2(x)} and
the set of free nodes.

Our second main result runs as follows:

Theorem 2. Let ε > 0 be arbitrary. Assume that d ≥ 90.1 · ln(1/ε). Let n be sufficiently large, let
S an arbitrary set of n keys, let x ∈ U −S, and let T be a table with m blocks of size d each, where
dm ≥ (1 + ε)n. Assume that h1, h2 : U → [m] are fully random hash functions, and that the keys
from S have been stored in T by an algorithm that is ignorant of h1(x), h2(x). Then the expected
time to insert x by the BFS procedure is (1/ε)O(log d).

The proof is outlined in Section 4. The constants in the bound are certainly not optimal. In this
extended abstract, we do not address the issue of extra space needed by the BFS, for the following
reasons: First, it is possible by simple and not very interesting modifications to the straightforward
BFS to get by with O(n1−ζ) extra space in the worst case, for ζ > 0 constant. Even a full rehashing
(choosing new hash functions h1 and h2 and rearranging all keys) can be done “in place”. Second,
if the technique described in Section 2.3 below is used, no more than n2/3 keys have to be handled
at any time, so the scratch space problem vanishes altogether.

An alternative approach to insertion (also suggested in [8]) is to search an augmenting path by
a certain kind of random walk in G, as follows: Assume x is to be inserted. Repeat the following,
starting with z := x:

Calculate h1(z) and h2(z). If one of the two blocks h1(z) or h2(z) is not full, store z in
one such block, and stop. (Ties are broken arbitrarily.) If both blocks are full, randomly
choose one of the keys stored in these blocks, call it z′, kick z′ out from its block (this
is the “cuckoo step”) and insert z in its place. Let z := z′, and start again.

Many variations of this procedure are possible, e.g., one might try to insert z in the block it
was not ejected from in the round before. Also, rules for stopping the loop have to be incorporated.

5

All implementations used in our experiments are based on this random walk idea, not on the BFS
procedure. It is an intriguing open problem to provide an analysis of the random walk insertion
procedure, if possible establishing a bound of O(1/ε) on the expected number of blocks probed in
the course of an insertion. (The same question is open for d-ary cuckoo hashing.)

2.3 Sharing Fully Random Hash Functions

For the analysis to carry through, we assume that the hash functions h1, h2 behave fully randomly
on S. If in the course of inserting a key it turns out that h1, h2 are not suitable, we might want
to rehash the whole set, using new hash functions h1, h2. We cannot rely on the set S of keys to
provide this degree of randomness. Note that although in the balanced allocation literature the
full randomness assumtion is routinely used, this is not the case in the hashing literature. Earlier
work on hashing (e.g., [3, 8, 13, 18]) has, very carefully, pointed out ways of working around this
problem, for example by using functions from high-performance universal classes like in [23]. (This
would not be sufficient for d-ary cuckoo-hashing, though.) In [7, 17] it was demonstrated that
full randomness can be simulated by universal hashing at the cost of O(n) words of extra space.
However, using such a construction would be unsatisfactory in our context, since we aim at getting
by with εn extra space.

We propose the following workaround, which might be helpful also in other contexts. Let
ε > 0 and n be given. Using high-performance hash classes [6, 23] we may choose a function
h : U → [n1/3] so that with probability 1 − n−c (for some constant c) the set S is split into n1/3

pieces Si = {x ∈ S | h(x) = i} of size ≤ (1 + ε
2)n2/3. (There is no need that S is known or the

pieces are listed.) For each of the pieces Si we run cuckoo hashing with blocks of size d in a separate
table Ti of size (1 + ε)n2/3. It is an easy exercise, using polynomial hash functions and techniques
described in [6], to provide a pair h1, h2 of hash functions that with high probability behaves fully
randomly on one Si, if we are allowed to use space n5/6 for storing h1, h2. Since we may use the
same hash function pair h1, h2 for all pieces Si, i = 0, . . . , n1/3− 1, the overall space needed for the
fully random functions is O(n5/6) = o(n). The algorithms described in the present paper then has
to be applied to each of the pieces separately. (Details will be given in a forthcoming paper.)

3 Analysis for the Static Case

In this section we analyze the size of d needed for storing a set S of n keys in m = (1 + ε)n/d
blocks of size d, if h1, h2 : U → [m] are fully random, thus proving Theorem 1. We set out as
in [8, 21, 22]: A set S of n keys can be stored in m = (1 + ε)n/d blocks of size d if and only
if for every X ⊆ S it holds that |Γ(X)| ≥ 1

d |X|, where Γ(X) = {h1(x), h2(x) | x ∈ X}. (This
may be seen by applying Hall’s marriage theorem [5, p. 31] to the bipartite graph (S, [dm], E),
E = {(x, d · hi(x) + j) | x ∈ S, i ∈ {1, 2}, 0 ≤ j < d}.) Thus, to prove Theorem 1 it is sufficient to
establish an upper bound on the probability F of the event that there is some X ⊆ S such that
|Γ(X)| < 1

d |X|.

Lemma 1. If ε ≤ 0.25 and d > 1 + ln(1/ε)
1−ln 2 , then F = O(m1−d).

Outline. For 1 ≤ j ≤ m/(1 + ε), let F (j) be the probability that there is a set Y of j blocks such
that some set X ⊆ S, |X| = dj, satisfies Γ(X) ⊆ Y . Clearly, F ≤

∑
1≤j≤m/(1+ε) F (j). Using the

6

Chernoff-Hoeffding bound (13) and the binomial bound (11), we get

F (j) ≤
(

m

j

)(
n(j/m)2

jd

)jd(
n− n(j/m)2

n− jd

)n−jd

≤ (1 + ε)−jdm
m(1+ε−d)

1+ε jj(d−1)(m− j)j−m

(
m2 − j2

m− j(1 + ε)

)d
m−j(1+ε)

1+ε

, (1)

which was already observed in [21, 22]. We examine the expression on the right-hand side of (1),
which we abbreviate by f(j, ε), in different ranges of j. For j = 1 we find f(1, ε) = O(m1−d). —
Now assume that j, 2 ≤ j < e−4m, is fixed. We prove that f(j, ε) is a decreasing function of ε;
thus, we can concentrate on the case ε = 0. The sequence f(j, 0), j = 2, . . . , be−4mc turns out
to be geometrically decreasing; hence we get

∑
2≤j≤e−4m F (j) = O(m2−2d). — The most involved

calculation concerns the range e−4m ≤ j ≤ (1 − 2ε)m. Here we read off from (1) by substituting
j = αm, that f(j, ε) = O(cm) for a constant c < 1, if

d >
α lnα + (1− α) ln(1− α)

α(lnα− ln(1 + ε)) + (1−α(1+ε))(ln(1−α2)−ln(1−α(1+ε)))
1+ε

, (2)

for e−4 ≤ α ≤ 1− 2ε. We prove that the right-hand side of (2) is bounded by

g(α) :=
α lnα + (1− α) ln(1− α)
α lnα + (1− α) ln(1 + α)

(3)

By calculus we show that g is an increasing function and that g(1 − 2ε) < 1 − ln ε
1−ln 2 . — For the

range j > (1 − 2ε)m, we observe that for each ε ≤ 0.25 the right-hand side of (2) is decreasing in
α, if 1− 2ε ≤ α ≤ 1/(1 + ε). (Details may be found in the appendix, Section B.)

4 The Expected Insertion Time

We want to examine the expected time of the BFS algorithm for inserting a new key x in T , as
described in Section 2.2 (also recall Remark 1). Just before x is inserted, a set S of n keys is stored
in T . We assume that the directed graph G determined by this placement is independent of the
hash values h1(x), h2(x) — this is the case if x was never inserted before. We start a BFS in G
from {h1(x), h2(x)} with the aim of finding a shortest path to a node in

Y0 := {y ∈ V | y is free in G}.

The time for the BFS in G is O(min{n, d`+1}), where ` is the length of such a shortest path. Our
aim is to see that the expectation of the number of edges we have to inspect before a free node is
found is O(1). For this, we analyze the distribution of the number of nodes at different distances
to Y0. (The analysis runs along the lines of that of [8], but we are dealing with quite a different
graph.) — Recursively define, for k ≥ 1:

Xk := {x ∈ S | h1(x) ∈ Yk−1 or h2(x) ∈ Yk−1} and
Yk := {y ∈ [m] | ∃x ∈ Xk : x is stored in y}.

We say that the keys of Xk “hit” Yk−1. It is easy to see that Yk is the set of nodes from which Y0

can be reached in at most k steps in G. By the definitions, Yk−1 ⊆ Yk, for k = 1, 2, We will

7

establish in a series of lemmas that with high probability the cardinalities |Y0|, |Y1|, |Y2|, . . . grow at
certain minimal rates in different ranges of k. These properties of G, which hold regardless of the
decisions made by the algorithm that has stored S, are derived from expansion properties of the
undirected graph G′ (see Remark 1), which follow from h1, h2 being fully random. The full proofs
of Lemmas 2, 4, and 6 may be found in the appendix.

Lemma 2. Let ε ≤ 0.1 and d ≥ 90.1 · ln(1
ε). Then there is a constant β < 1 such that with

probability 1−O(mβm) each set of blocks Y that satisfies ε
1+εm ≤ r = |Y | ≤ 5

13m is hit by at least
4
3rd keys from S.

Outline. A set of blocks Y , |Y | = r, is hit by 4
3rd keys with h1 or h2 if at most n− 4

3rd keys avoid
Y with both hash functions h1 and h2. Let F (r) denote the probability that there is a set Y of size
r such that there are more than n − 4

3rd keys that avoid Y with both hash functions. Employing
the Chernoff-Hoeffding bound (13), we obtain:

F (r) ≤
(

m

r

)(
n
(
1− r

m

)2
n− 4

3rd

)n− 4
3
rd(

n− n
(
1− r

m

)2
4
3rd

) 4
3
rd

. (4)

By n = dm/(1 + ε), the binomial bound (11), and the substitution r = αm we observe that
F (r) < βm for a suitable 0 < β < 1, provided that

d >
α lnα + (1− α) ln(1− α)(

1
1+ε −

4
3α
)(

2 ln(1− α)− ln
(
1− 4(1+ε)α

3

))
+ 4α

3 ln
(

3(2−α)
4(1+ε)

) (5)

for all α between ε
1+ε and 5

13 . By a detailed analysis, the right-hand side of (5) can be shown to
be bounded by 90.1 ln(1/ε), for 0 ≤ ε ≤ 0.1 and ε

1+ε ≤ α ≤ 5
13 . This implies the lemma. (The

constant 90.1 may be replaced by smaller numbers if the range of ε is reduced. For details, see the
proof in Appendix C.)

Lemma 3. If the digraph G induced by S being stored meets the conclusion of Lemma 2, then there
is some k∗ ≤ 2 + log 4

3

(
5(1+ε)

13ε

)
such that |Yk∗ | > m

2 .

Proof. Assume k ≥ 1 and |Yk−1| ≤ 5
13m. Consider the set Xk of keys that hit Yk−1. By the

assumption, |Xk| ≥ 4
3d|Yk−1|. By definition, all keys x ∈ Xk are stored in blocks in Yk. Only

d|Yk−1| of them can be stored in Yk−1, so at least 1
3d|Yk−1| of them must be stored in Yk − Yk−1,

which implies that |Yk − Yk−1| ≥ 1
3 |Yk−1|; hence |Yk| ≥ 4

3 |Yk−1|.
Now let k′ be minimal with |Yk′ | > 5

13m. By the above, it is easy to see that either |Yk′ | > 1
2m

(then we let k∗ = k′) or |Yk′+1| ≥ 4
3 ·

5
13m > 1

2m (then we let k∗ = k′ + 1). (This holds even if
5m/13 < |Yk′ | ≤ m/2, since then we apply the conclusion of Lemma 2 to a subset of Yk′ of size
b5m/13c.)

Because there are exactly εn free cells in the table, we have |Y0| ≥ εn
d = ε

1+εm. Thus, |Yk| ≥
ε

1+εm
(

4
3

)k for 0 ≤ k < k′, whence we get k∗ ≤ 1 + k′ ≤ 2 +
⌊
log 4

3

(
5(1+ε)

13ε

)⌋
.

Lemma 4. Let d ≥ 8. Then there is some β < 1 such that with probability 1 − O (βm) we have
that each set Y of blocks with m

2 ≤ |Y | ≤ m− 4m
e4d3 is hit by at least n− 9

10d(m− |Y |) keys.

8

Outline. Let Y = [m] − Y and r = |Y |. Again by the Chernoff-Hoeffding bound (13) and the
binomial bound (11) we find that the probability that there is a set Y with r = m−|Y | in [4m

e4d3 , m
2]

such that more than 9
10dr keys hit Y with both hash functions, is bounded by

mm

rr(m− r)m−r

(
10r

9(1 + ε)m

) 9
10

rd(10(m2 − r2)
(10m− 9r(1 + ε))m

) dm
1+ε

− 9
10

rd

. (6)

We denote the expression in (6) by f(r, ε). It is not hard to see that f(r, ε) is decreasing in ε, thus
we can concentrate on the case ε = 0. After replacing ε by 0 in (6), and substituting α = r/m, an
expression for a function g(α, d)m results. By analyzing the partial derivative of g w.r.t. d we note
that for each fixed α the function g(α, d) is decreasing in d. A look at a Maple plot (alternatively:
an involved analysis) reveals that g(α, 8) has exactly one minimum point with respect to α in the
interior of the interval [4

e4d3 , 1
2], so it does not exceed max{g(4

e4d3 , 8), g(0.5, 8)} = g(4
e4d3 , 8) < 1.

(For the details see the full proof in Appendix D.)

Lemma 5. If G meets the conclusions of Lemmas 2 and 4, and k∗ satisfies |Yk∗ | ≥ m
2 , then there

is some `∗, `∗ = O(log d) such that m− |Yk∗+`∗ | ≤ 4m
e4d3 .

Proof. The straightforward induction proof, which uses Lemma 4, is omitted.

The following lemma states a standard expansion property of bipartite random graphs, see [16,
p. 109].

Lemma 6. Let d ≥ 20, and γ = 4
e4d3 . With probability 1−O(m−d/2) we have that each set X ⊆ S

of keys with d ≤ |X| ≤ γdm hits more than ∆|X| different blocks, where ∆ = 1
d1/3 + 1

d .

Proof. The probability that there is a set X of j keys, d ≤ j ≤ γdm, that hits no more than ∆j
blocks can be bounded by∑

d≤j≤γdm

(
n

j

)(
m

b∆jc

)(
b∆jc
m

)2j

≤
∑

d≤j≤γdm

(
en

j

)j (em

∆j

)∆j (∆j

m

)2j

. (7)

(We used the simple binomial bound (12).) Straightforward simplifications, using that d ≥ 20

implies that ∆ < 1
2 , lead to the bound

∑
d≤j≤γdm

(
(e/2)3/2 · d ·

√
j/m

)j
for the right hand side

in (7). For j = d, d + 1, . . . , bγdmc the terms in this sum are geometrically decreasing by a factor
smaller than 1

2 , hence the sum is bounded by O(m−d/2).

We conclude that for k ≥ k∗ + `∗ the complements of the sets Yk shrink fast.

Lemma 7. Assume that |[m]−Yk∗+`∗ | ≤ γm and that the hash functions h1, h2 meet the conclusion
of Lemma 6. Then the cardinalities aj = |[m]− Yk∗+`∗+j |, j = 0, 1, 2, . . ., satisfy aj ≤ d−2/3 · aj−1

for j = 1, 2, 3, Hence,

|[m]− Yk∗+`∗+j | ≤ γd−2j/3m, for j = 0, 1, 2,

(In particular, there is some L with Yk∗+`∗+L 6= [m] = Yk∗+`∗+L+1.)

Proof. Fix j ≥ 1. If aj = 0, there is nothing to prove; thus assume aj ≥ 1. Then by the definitions,
all aj nodes in [m] − Yk∗+`∗+j are full. That means that the set Ej of edges in G with tails in
[m]− Yk∗+`∗+j has cardinality daj . By the assumption that the conclusion of Lemma 6 is satisfied
the edges in Ej touch at least ∆daj = (d2/3 + 1)aj nodes overall. Only aj of these nodes are in
[m]−Yk∗+`∗+j . By the definition of the sets Yk, no edge in G can run from a node in [m]−Yk∗+`∗+j

to a node in Yk∗+`∗+(j−1). Hence the heads of the edges in Ej hit at least (d2/3 +1)aj −aj = d2/3aj

distinct nodes in [m]− Yk∗+`∗+(j−1), which implies that aj−1 ≥ d2/3aj .

9

Lemma 8. Assume Y0, Y1, . . . , Yk∗ , . . . , Yk∗+`∗ , . . . , Yk∗+`∗+L are fixed and fulfill the expansion prop-
erties from Lemmas 3, 5, and 7. Assume further that h1(x), h2(x) are random values in [m]. Then
the expected number of edges probed in the BFS insertion procedure for x is (1/ε)O(log d).

Proof. Let Nx be the number of edges of G probed when x is inserted. Let σk =
∑

0<κ≤k dκ <

2dk, for k ≥ 0, and kx = min{k | h1(x) ∈ Yk or h2(x) ∈ Yk}. Then the number of edges of G
probed when inserting x is not larger than 2σkx . Thus, it is sufficient to estimate E(σkx). We have

E(σkx) =
∑
q≥1

Prob(σkx ≥ q) =
∑
k≥1

Prob(kx ≥ k) · dk. (8)

The last sum in (8) is estimated in two pieces. We have∑
1≤k≤k∗+`∗

Prob(kx ≥ k) · dk ≤ (k∗ + `∗)dk∗+`∗ . (9)

For the rest of the sum in (8), we notice that by Lemma 7∑
k∗+`∗<k≤k∗+`∗+L

Prob(kx ≥ k) · dk = dk∗+`∗ ·
∑

1≤j≤L

Prob(kx ≥ k∗ + `∗ + j) · dj

≤ dk∗+`∗ ·
∑

1≤j≤L

Prob(h1(x), h2(x) ∈ [m]− Yk∗+`∗+(j−1)) · dj

≤ dk∗+`∗ ·
∑

1≤j≤L

(d−2(j−1)/3)2 · dj < 2dk∗+`∗+1. (10)

The sum of the parts in (9) and (10) is bounded by (k∗ + `∗ + 2)dk∗+`∗+1 = O(d)O(log(1/ε)) =
(1/ε)O(log d). This shows that the expected number of edges probed in inserting x is bounded by
(1/ε)O(log d).

To prove Theorem 2 we note that with probability 1 − O(m−d/2) the graph G satisfies the
conclusions of Lemmas 2, 4, and 6. If this is the case, then the expansion properties of Lemmas 3,
5, and 7 hold, and we may apply Lemma 8 to obtain the claimed bound on the expected insertion
time. If G does not have the expansion properties from Lemmas 3, 5, and 7, and Y0 is reachable
from {h1(x), h2(x)}, the BFS will find an augmenting path in time O(n) — this gives a contribution
of O(m1−d/2) to the expected insertion time. In case Y0 is not reachable from {h1(x), h2(x)}, the
functions h1, h2 are not suitable for S ∪ {x}, and we must perform a total rehashing for all these
keys. By Theorem 1 this happens with probability O(m1−d). It is easily seen that even if we
simply insert the keys by the BFS procedure, and rehash again if necessary, the expected time for
rebuilding the table is O(n). Hence, this last case contributes O(m2−d) to the expected insertion
cost.

Conclusion. We obtained new results for a natural data allocation problem arising in differ-
ent contexts: balanced allocation with two choices, edge orientation in random graphs, dynamic
dictionaries with worst case constant access time. The constant given in Theorem 2 is certainly
not optimal, and should be improved. It is an intriguing open problem to analyze at least one
variant of the random-walk insertion procedure, if possible establishing a bound of O(ln(1/ε)) on
the expected number of blocks probed (while maintaining the bound d = O(log(1/ε))).

References

[1] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. SIAM J. Comput.,
29:180–200, 2000.

10

[2] P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking. Balanced allocations: The heavily
loaded case. In 32nd STOC, pp. 745–754. ACM, 2000.

[3] A. Czumaj, F. Meyer auf der Heide, and V. Stemann. Contention resolution in hashing based
shared memory simulations. SIAM J. Comput., 29:1703–1739, 2000.

[4] A. Czumaj, Ch. Riley, and Ch. Scheideler. Perfectly balanced allocation. In RANDOM-
APPROX, LNCS 2764, pp. 240–251. Springer, 2003.

[5] R. Diestel. Graph Theory. Springer, New York, 1997.

[6] M. Dietzfelbinger and F. Meyer auf der Heide. Dynamic hashing in real time. In Buchmann,
J., et al., editor, Informatik · Festschrift zum 60. Geburtstag von Günter Hotz, pp. 95–119. B.
G. Teubner, 1992.

[7] M. Dietzfelbinger and P. Woelfel. Almost random graphs with simple hash functions. In 35th
STOC, pp. 629–638. ACM, 2003.

[8] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis. Space efficient hash tables with worst case
constant access time. Theory of Computing Systems, 38:229–248, 2005.

[9] A. Frieze. Personal communication in [1]. 1990.

[10] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. In
40th FOCS, pp. 285–298. IEEE, 1999.

[11] T. Hagerup and Ch. Rüb. A guided tour of Chernoff bounds. Inf. Process. Lett., 33:305–308,
1990.

[12] R. Karp. Random graphs, random walks, differential equations and the probabilistic analysis
of algorithms. In 15th STACS, LNCS 1373, pp. 1–2. Springer, 1998.

[13] R. Karp, M. Luby, and F. Meyer auf der Heide. Efficient PRAM simulations on a distributed
memory machine. Algorithmica, 16:517–542, 1996.

[14] M. Mitzenmacher, A. W. Richa, and R. Sitaraman. The power of two random choices: A
survey of techniques and results, vol. 1, pp. 255–312. In Rajasekaran et al., editor, Handbook
of Randomized Computing. Kluwer Academic Press, 2001.

[15] R. Motwani. Average-case analysis of algorithms for matchings and related problems. J. of
the ACM, 41(6):1329–1356, 1994.

[16] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[17] A. Östlin and R. Pagh. Uniform hashing in constant time and linear space. In 35th STOC,
pp. 622–628. ACM, 2003.

[18] R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51:122–144, 2004.

[19] R. Panigrahy. Efficient hashing with lookups in two memory accesses. In 16th SODA. ACM-
SIAM, 2005.

[20] P. Sanders. Fast priority queues for cached memory. In 1st Workshop ALENEX, LNCS 1619,
pp. 312–327. Springer, 1999.

11

[21] P. Sanders. Reconciling simplicity and realism in parallel disk models. In 12th SODA, pp. 67–
76. ACM-SIAM, 2001.

[22] P. Sanders, S. Egner, and J. Korst. Fast concurrent access to parallel disks. In 11th SODA,
pp. 849–858. ACM-SIAM, 2000.

[23] A. Siegel. On universal classes of fast high performance hash functions, their time-space
tradeoff, and their applications. In 30th FOCS, pp. 20–25. IEEE, 1989.

12

A Some Inequalities

We will be using the following upper bound for binomial coefficients:(
n

k

)
≤ nn

kk(n− k)n−k
=
(

1
µµ(1− µ)1−µ

)n

, for 0 ≤ k ≤ n, (11)

where µ = k/n. If k is small in comparison to n, the following weaker inequality is already helpful:(
n

k

)
≤
(e · n

k

)k
. (12)

Further, a standard version of the Chernoff-Hoeffding bounds is used repeatedly: If X1, . . . , Xn

are independent 0-1-valued random variables and X = X1 + · · · + Xn, then for E(X) ≤ a ≤ n we
have

Prob(X ≥ a) ≤
(

E(X)
a

)a(n−E(X)
n− a

)n−a

. (13)

(For a proof, see e.g. [11].)

B Proof of Lemma 1

Proof. For 1 ≤ j ≤ m/(1 + ε), let F (j) be the probability of the event that there is a set Y of j
blocks such that there is a set X ⊆ S of dj keys which satisfies Γ(X) ⊆ Y . Clearly,

F ≤
∑

1≤j≤m/(1+ε)

F (j). (14)

To bound F (j), we apply the Chernoff-Hoeffding bound (13) as follows. For a fixed Y ⊆ [m] of size
j define random variables Ix, x ∈ S, as follows:

Ix :=

{
1, if h1(x), h2(x) ∈ Y ,
0 otherwise.

(15)

Further let I =
∑

x∈S Ix. We have Prob(Ix = 1) = (j/m)2 and E(I) =
∑

x∈S E(Ix) = n j2

m2 .
Because the Ix are independent, by (13) we obtain the following bound:

Prob(I ≥ jd) ≤
(

nj2

m2jd

)jd(
n(m2 − j2)
m2(n− jd)

)n−jd

. (16)

Because there are
(
m
j

)
sets Y of size j, we get

F (j) ≤
(

m

j

)(
nj2

m2jd

)jd(
n(m2 − j2)
m2(n− jd)

)n−jd

. (17)

We apply (11) and substitute n = dm
1+ε to obtain

F (j) ≤ mm

jj(m− j)m−j

(
j

(1 + ε)m

)jd(d(m2 − j2)
(1 + ε)m(n− jd)

)dm/(1+ε)−jd

=
mm

jj(m− j)m−j

(
j

(1 + ε)m

)jd(m2 − j2

(1 + ε)m(m/(1 + ε)− j)

)dm/(1+ε)−jd

= (1 + ε)−jdm
m(1+ε−d)

1+ε jj(d−1)(m− j)j−m

(
m2 − j2

m− j(1 + ε)

)d
m−j(1+ε)

1+ε

. (18)

13

We abbreviate the expression of the right-hand side of (18) by f(j, ε) and estimate this bound
in different ranges of j, 1 ≤ j ≤ m/(1 + ε).

Case 1: j = 1. — By (17) we get:

F (1) ≤ m

(
1

(1 + ε)m

)d(n− n/m2

n− d

)n−d

< m

(
1

(1 + ε)m

)d

ed−n/m2

= O

(
1

md−1

)
. (19)

Case 2: 2 ≤ j < e−4m. — We first note that f(j, ε) is decreasing in ε. For this, we differentiate:

∂ ln f

∂ε
= −d(1 + ε)−2m ln

(
1− (j/m)2

1− j(1 + ε)/m

)
. (20)

Since j/m < 1, we have 1− (j/m)2 > 1− (1 + ε)j/m, hence ∂ ln f
∂ε < 0. This means that f(j, ε) <

f(j, 0), and hence we continue from (18) as follows:

F (j) < mm(1−d)jj(d−1)(m− j)j−m(m + j)d(m−j)

= mm(1−d)jj(d−1)mj−m

(
1− j

m

)j−m

md(m−j)

(
1 +

j

m

)d(m−j)

< mj(1−d)jj(d−1)e
j(m−j)

m e
dj(m−j)

m <

((
j

m

)d−1

ed+1

)j

. (21)

The terms
((

j
m

)d−1
ed+1

)j

are geometrically decreasing for 2 ≤ j < e−4m, hence

∑
2≤j<e−4m

F (j) = O

((2
m

)d−1

ed+1

)2
 = O

(
1

m2d−2

)
. (22)

Case 3: e−4m ≤ j ≤ (1 − 2ε)m. — If we substitute α = j/m in the right-hand side of (18)
and take logarithms, we get ln(F (j)) ≤ mRε(α), where

Rε(α) := −α lnα− (1− α) ln(1− α) + αd(lnα− ln(1 + ε))

+
d(1− α(1 + ε))(ln(1− α2)− ln(1− α(1 + ε)))

1 + ε
. (23)

If d is chosen so that Rε(α) < 0 for e−4 ≤ α ≤ 1− 2ε, we will have F (j) ≤ cm for a constant c < 1.
To find a suitable d we shuffle the expression for Rε(α) a little and get the following sufficient
condition for Rε(α) < 0:

d >
α lnα + (1− α) ln(1− α)

α(lnα− ln(1 + ε)) + (1−α(1+ε))(ln(1−α2)−ln(1−α(1+ε)))
1+ε

=: rε(α) (24)

Our aim is to find an upper bound for rε(α), in the range 0 ≤ ε ≤ 0.25, e−4 ≤ α ≤ 1− 2ε. First we
show that

g(α) :=
α lnα + (1− α) ln(1− α)
α lnα + (1− α) ln(1 + α)

(25)

14

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

g(α)
r0.1(α)

r0.01(α)
r0.001(α)

Figure 1: The graphs of g and rε for several ε

is an upper bound for rε, for all ε ≤ 0.25 (Fig. 1).
The expressions rε and g(α) are fractions of the form A/B and A/B′, where A,B, B′ < 0. This

implies that A/B′ ≥ A/B if and only if B′ ≥ B. That means that we must prove the following
inequality:

0 ≤ α lnα + (1− α) ln(1 + α)−(
α(lnα− ln(1 + ε)) +

(1− α(1 + ε))(ln(1− α2)− ln(1− α(1 + ε)))
1 + ε

)
= (1− α) ln(1 + α) + α ln(1 + ε)−

(
1

1 + ε
− α

)
ln
(

1− α2

1− α(1 + ε)

)
. (26)

This is easy: The derivative of the last expression in (26) with respect to ε is

ln(1− α2)− ln(1− α(1 + ε))
(1 + ε)2

=
ln
(

1−α2

1−α(1+ε)

)
(1 + ε)2

> 0. (27)

Therefore

(1− α) ln(1 + α) + α ln(1 + ε)−
(

1
1 + ε

− α

)
ln
(

1− α2

1− α(1 + ε)

)
≥ (1− α) ln(1 + α)− (1− α) (ln(1− α2)− ln(1− α)) = 0, (28)

which shows that (26) is true.
Next we need to analyze the function g(α) in the interval [e−4, 1−2ε]. Now g is a fixed function

(see Fig. 1) and we abbreviate a somewhat tedious exercise in calculus looking at

g′(α) =
ln(α)((1 + α) ln(1 + α)− 2α) + ln(1− α)(2α− (1 + α) ln(α)− 2)

(α ln(α) + ln(1 + α)− ln(1 + α)α)2(1 + α)
. (29)

15

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1

g′(α)

Figure 2: The graph of the numerator of g′

Both numerator (see Fig. 2) and denominator of the latter function turn out to be positive for
0 < α < 1. This means that g(α) is strictly increasing and hence

g(α) ≤ g(1− 2ε) = 1 +
ln ε− ln(1− ε)

(1−2ε) ln(1−2ε)
2ε + ln 2 + ln(1− ε)

. (30)

Our next aim is to bound g(1− 2ε) in (30).
We want to show that g(1− 2ε) ≤ 1 + − ln ε

1−ln 2 . This is true if and only if(
(1− 2ε) ln(1− 2ε)

2ε
+ 1 + ln(1− ε)

)
ln ε− (1− ln 2) ln(1− ε) ≥ 0. (31)

To prove (31) symbolically, we study the Taylor series of (1−2ε) ln(1−2ε)
2ε + 1 + ln(1 − ε). However,

in this extended abstract we omit this tedious calculation and refer to a plot (see Fig. 3), which
makes it clear that 1 + − ln ε

1−ln 2 − g(1− 2ε) > 0 for 0 < ε < 0.5. We summarize: If we choose

d ≥ 1 +
1

1− ln 2
ln
(

1
ε

)
= 1 + 3.25889 . . . ln

(
1
ε

)
, (32)

then F (j) = O(cn) for a constant c < 1, for e−4 ≤ j ≤ (1− 2ε)m.
Case 4: (1 − 2ε)m ≤ j ≤ m/(1 + ε). — Let 0 ≤ ε ≤ 0.25 be fixed. Looking at the derivative

of rε = rε(α) at α = 1− 2ε, we get

r′ε(1− 2ε) =
((1− 2ε) ln(1− 2ε) + 2ε ln ε)(2 ln 2 + ln(1− ε)− ln(1 + 2ε))(

(1− ε− ε2) ln
(

1+ε
1−2ε

)
− (2ε2 + ε) ln

(
4(1−ε)
1+2ε

))2 . (33)

We show that the numerator of the fraction in (33) is negative, hence that r′ε(1− 2ε) < 0.

16

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5

1 + − ln ε
1−ln 2 − g(1− 2ε)

Figure 3: The graph of 1 + − ln ε
1−ln 2 − g(1− 2ε)

To prove that the numerator is negative, we examine its two factors. Obviously, (1− 2ε) ln(1−
2ε) + 2ε ln ε < 0. By ln(1− x) ≥ −x/(1− x), 0 ≤ x < 1, we get for ε ≤ 0.25:

2 ln 2 + ln(1− ε)− ln(1 + 2ε) = 2 ln 2 + ln
(

1− 3ε

1 + 2ε

)
> 2 ln 2− 3ε

1− ε
> 0. (34)

Let us denote the denominator of rε(α) from (24) by u. We differentiate twice to obtain

u′′ =
2α(1 + α2)(2ε + ε2 + 2)− (1 + ε)(6α2 + 1 + α4)

α(α2 − 1)2(εα + α− 1)(1 + ε)
. (35)

The numerator of u′′ is a polynomial of degree four. We discuss the position of its roots. Since
ε < 0.25, there is only one root in (0, 1/(1 + ε)], which is 1 + ε−

√
ε2 + 2ε. Further we have

1 + ε−
√

ε2 + 2ε < 1− 2ε, (36)

therefore u′′ does not have a root in [1− 2ε, 1/(1 + ε)]. At α = 1− 2ε we find

u′′(1− 2ε) = − (1− 4ε)(2ε2 + 1)
4ε(1− ε)2(1 + ε)(1− 4ε2)

< 0. (37)

Hence u′′ is negative if 1− 2ε ≤ α ≤ 1/(1 + ε).
The second derivative 1

α(1−α) of the numerator v of rε is positive. Both u and v are negative.
This implies

(v′u− vu′)′ = v′′u− vu′′ < 0, (38)

and hence v′u− vu′ is decreasing. Together with the fact that v′u− vu′ is negative in α = 1− 2ε,
this shows that v′u− vu′ < 0 in [1− 2ε, 1/(1 + ε)]. Thus

r′ε =
(v

u

)′
=

v′u− vu′

u2
< 0, (39)

17

and hence rε is decreasing. Hence rε(α) ≤ rε(1− 2ε) in this range, and we get F (j) = O(cn) as in
Case 3.

C Proof of Lemma 2

A set of blocks Y , |Y | = r, is hit by 4
3rd keys with h1 or h2 if and only if at most n− 4

3rd keys hit
Y = [m] − Y with both hash functions h1 and h2. By F (r) we denote the probability that there
exists a set Y of size r such that more than n− 4

3rd keys hit Y with both hash functions. To bound
F (r) we argue as in the proof of Lemma 1, using the Chernoff-Hoeffding bound (11). This yields

F (r) ≤
(

m

r

)(
n
(
1− r

m

)2
n− 4

3rd

)n− 4
3
rd(

n− n
(
1− r

m

)2
4
3rd

) 4
3
rd

. (40)

We substitute n = dm/(1 + ε) and r = αm, use (11), and simplify to get

F (r) ≤

 1
αα(1− α)1−α

(
(1− α)2

1− (1 + ε)4
3α

) d
1+ε

− 4
3
αd(

2− α
4
3(1 + ε)

) 4
3
αd
m

. (41)

To prove the lemma it is sufficient to show

1
αα(1− α)1−α

(
(1− α)2

1− (1 + ε)4
3α

) d
1+ε

− 4
3
αd(

2− α
4
3(1 + ε)

) 4
3
αd

(42)

is smaller than 1 for ε/(1 + ε) ≤ α ≤ 5/13. This is the case if and only if d is at least

α lnα + (1− α) ln(1− α)(
1

1+ε −
4
3α
)(

2 ln(1− α)− ln
(
1− 4(1+ε)α

3

))
+ 4α

3

(
ln(2− α)− ln

(
4(1+ε)

3

)) . (43)

We wish to find an upper bound for the expression in (43). We call its numerator u and its
denominator v and show that v′′ if positive for 0 < α ≤ 5

13 , if ε ≤ 0.1. Then we can replace v by a
secant ṽ through the points of v at α = 0 and α = 5

13 , and get u/ṽ > u/v (Fig. 4).
The second derivative of v is

v′′ =
12α− 16ε− 8 + 84αε + 10α2 − 40α2ε− 32α2ε2 + 64ε2 − 12α3ε− 12α3

3(2− α)2(1 + ε)(−3 + 4α + 4αε)(1− α)2
. (44)

The denominator of the latter term is negative if α < 5
13 . Therefore it is sufficient to consider the

roots of the numerator of v′′. Although the numerator of v′′ is a polynomial of degree 3 we do not
want to bother with its exact roots. Instead we investigate its derivative, which is

12 + 84ε + 20α− 80αε− 64ε2α− 36α2ε− 36α2. (45)

The roots of the latter term are

α1,2 =
5− 20ε− 16ε2 ±

√
133 + 664ε + 996ε2 + 640ε3 + 256ε4

18(1 + ε)
. (46)

It is easy to see that α1, α2 6∈ [0, 5
13] if 0 < ε ≤ 0.1. With α = 5

13 the expression (45) reduces to

2428
169

+
8096
169

ε− 320
13

ε2, (47)

18

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

0 0.02 0.04 0.06 0.08 0.1

0.15 · u
v
ṽ

Figure 4: Numerator u, denominator v and secant ṽ of v in the function from (43), for ε = 0.01

which is positive if ε ≤ 0.1. Therefore the numerator of v′′ is increasing. Further, at α = 5
13 the

numerator of v′′ is
−5686

2197
+

21328
2197

ε +
10016
169

ε2, (48)

which is negative, if ε ≤ 0.1; because it is increasing it is negative for each 0 ≤ α ≤ 5
13 . Because

the denominator of v′′ is negative, v′′ itself is positive.
The secant ṽ that intersects v at α = 0 and α = 5

13 , is

ṽ(α) =
13
5

v

(
5
13

)
α. (49)

If we replace v by ṽ in (43), we get

5(α ln(α) + (1− α) ln(1− α))

13α
((

1
1+ε −

20
39

)
ln
(

192
13(19−20ε)

)
+ 20

39 ln
(

63
52(1+ε)

)) . (50)

The expression ((
1

1 + ε
− 20

39

)
ln
(

192
13(19− 20ε)

)
+

20
39

ln
(

63
52(1 + ε)

))
(51)

is negative if ε ≤ 0.1. The expression

α ln(α) + (1− α) ln(1− α)
α

(52)

has a positive derivative. So (50) is decreasing and is maximal at the left edge. Because α ≥ ε
1+ε ,

the upper bound for (50) is

5(ε ln ε− (1 + ε) ln(1 + ε))

13ε
((

1
1+ε −

20
39

)
ln
(

192
13(19−20ε)

)
+ 20

39 ln
(

63
52(1+ε)

)) =: gε (53)

19

10

20

30

40

50

60

70

80

90

100

0 0.02 0.04 0.06 0.08 0.1

gε

− ln ε

Figure 5: The function gε

− ln ε

By choosing d > gε, we get F (r) = O(βm) for a constant β < 1.
Now let us take a closer look at gε. First we see that

lim
ε→0

gε

− ln ε
= − 15

74 ln 2− 39 ln 13− 19 ln 19 + 59 ln 3 + 20 ln 7
= 15.82 . . . (54)

We want to avoid a comprehensive analysis of −gε/ ln ε. Instead we refer to Fig. 5. Obviously,
−gε/ ln ε is a continous, strictly increasing function. For ε = 0.1 we get a value of 90.08177
This finishes the proof of the lemma.

Comment : For tighter bounds on ε, the constant 90.1 in Lemma 2 may be replaced by some
smaller constant. For example, for 0 ≤ ε ≤ 0.01, we have gε < 25 ln(1/ε).

D Proof of Lemma 4

Proof. The set Y is hit by n − 9d
10(m − |Y |) keys with one hash function if and only if at most

9d
10(m− |Y |) = 9d

10 |Y | keys hit the set Y with both hash functions.
As before, we bound the probability Fε(r) that there is a set Y of size r, 4

e4d3 ≤ r ≤ m
2 , which is

hit by more than 9d
10 |Y | keys with both hash functions by applying the Chernoff-Hoeffding-bound

(13) and the binomial bound (11):

Fε(r) ≤
mm

rr(m− r)m−r

(
10r

9(1 + ε)m

) 9
10

rd(10(m2 − r2)
(10m− 9r(1 + ε))m

) dm
1+ε

− 9
10

rd

(55)

It is easy to see the right hand side of (55) is decreasing in ε. Indeed, the derivative of ln(Fε(r))
with respect to ε is

− dm

(1 + ε)2
ln
(

10(m2 − r2)
10m2 − 9(1 + ε)rm

)
, (56)

20

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0 0.1 0.2 0.3 0.4 0.5

g2(α)

Figure 6: The graph of g2

which is negative for r ≤ m/2, because r
m ≤ 1

2 < 9(1+ε)
10 and hence

10r2 < 9(1 + ε)rm ⇒ 10(m2 − r2) > 10m2 − 9(1 + ε)rm. (57)

This leads us to

Fε(r) <
mm

rr(m− r)m−r

(
10r

9m

) 9
10

rd(10(m2 − r2)
(10m− 9r)m

)dm− 9
10

rd

=: g1(r). (58)

Next we establish that g1(r) decreases if d increases: We substitute r = αm and examine

1
m
· ∂ ln g1(r)

∂d
= ln 10 +

9
10

α ln
(α

9

)
+
(

1− 9
10

α

)
ln
(

1− α2

10− 9α

)
=: g2(α) (59)

Again, to spare the reader a tedious discussion of this function, we read off from a plot (see Fig. 6)
that this function is negative for 0 < α < 1/2, and hence that g1(r) decreases if d increases.

Now let us look at g1(r) for d = 8. With r = αm we get the following representation: g1(r) =
g̃(α)m, where

g̃(α) =
1

αα · (1− α)1−α
·
(

10α

9

)7.2α

·
(

10(1− α2)
10− 9α

)8−7.2α

(60)

Again, we shortcut a tedious proof by calculus by looking at a plot of g̃(α) (see Fig. 7), which reveals
that this function attains the value 1 for α = 0 and has exactly one minimum point at about 0.14.
This means that g̃(α) attains its maximum in [4

e4d3 , 1
2] at one of the border points, and hence

g̃(α) ≤ max{g(4
e4 d3), g(1

2)} < 1, for all d ≥ 8, 4
e4d3 ≤ α ≤ 1

2 . This implies that Fε(r) ≤ g̃(4
e4d3)m

for all r in [4m
e483 ,m/2], and hence ∑

4m
e4d3≤r≤m/2

Fε(r) < m · βm,

for some constant β < 1.

21

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.3 0.4 0.5

g̃(α)

Figure 7: The graph of g̃

E Experiments

In two experiments we compared the performance of four methods for implementing a dynamic
dictionary:

• blocked cuckoo hashing (cuckoo-block), as described in the paper;

• a cuckoo-linear-probing scheme (cuckoo-lp), a variant in which key x is assigned to two posi-
tions h1(x) and h2(x) in a table of size m = (1 + ε)n and may be placed in one of the cells
(hj(x) + r) mod m, for j = 1, 2 and 0 ≤ r < d;

• linear probing (lp) with one hash function;

• cuckoo hashing with d functions (cuckoo-d).

In the first experiment, n = 106 distinct keys were inserted into an empty table of size (1+ε)n. Then
106 keys, all different from the first ones, were searched. Thus the time for building a dictionary
and the time for a negative lookup were measured.

The keys were randomly chosen from [228]; the hash functions were random polynomials from
{h : x 7→ (

∑3
i=0 aix

i) mod p mod m | a0, . . . , a3 ∈ [228]}, where p is a large prime number and m is
the number of blocks for cuckoo-block and the size of the array otherwise.

Insertion for all cuckoo hashing variants was implemented in the random-walk fashion, see
Section 2.2. The experiments2 were executed for different values of ε and d. For each of the cuckoo
hashing variants, each task, and for each ε we noted the “best” d, which minimized the measured
time for the respective operation. Further, the time needed by linear probing was measured (tables
1 and 2).

2Processor: Intel(R) Pentium(R) 4 CPU 2.40 GHz stepping 07 (8 K L1 cache, 512 K L2 cache), board: GA-8PE800
i845PE ATX, RAM: DDR-333 512 MB, environment: SuSE Linux 9.1 (kernel 2.6.5), compiler: Intel C Compiler for
Linux, version 8.0, optimization options: -O3 -xN -ipo

22

cuckoo-d cuckoo-block cuckoo-lp lp
ε

time d time d time d time
0.5 1.618 3 0.924 5 0.908 5 0.38
0.2 2.142 3 0.938 8 0.94 5 0.388
0.1 2.678 4 0.952 16 0.98 8 0.4
0.05 3.376 5 0.966 16 1.024 11 0.418
0.02 4.46 6 1.002 32 1.094 15 0.466
0.01 5.354 7 1.02 32 1.152 18 0.546

Table 1: Average insertion time in µs and the “best” d for a key when filling an empty array

unsuccessful search successful search
cuckoo-d cuckoo-block cuckoo-lp lp cuckoo-d cuckoo-block cuckoo-lp lpε

time d time d time d time time d time d time d time
0.5 1.286 3 0.814 2 0.816 2 0.378 0.846 3 0.708 2 0.794 2 0.354
0.2 1.278 3 0.82 3 0.806 2 0.43 0.838 3 0.76 3 0.788 2 0.36
0.1 1.272 3 0.82 3 0.814 3 0.548 0.834 3 0.766 3 0.806 3 0.368
0.05 1.678 4 0.826 4 0.81 3 0.934 1.048 4 0.79 4 0.814 5 0.384
0.02 2.086 5 0.834 5 0.81 3 3.012 1.24 5 0.802 5 0.82 6 0.416
0.01 2.092 5 0.834 6 0.808 3 10.114 1.24 5 0.81 6 0.82 6 0.462

Table 2: Average lookup time for a search in µs and the “best” d

Looking at Tables 1 and 2 one notes that decreasing ε forces that larger d are chosen but affects
the insertion time and the negative lookup time of cuckoo-block and cuckoo-lp only a little. On
the other hand, cuckoo-d is affected more: each additional hash function needed to make up for a
smaller ε increases the cost for a negative lookup operation by about 0.4 µs. Moreover, we observe
a dramatic increase of the negative lookup time for lp if ε goes below 0.02. For positive lookups,
linear probing cannot be beaten on average for sets of the size considered here; but one should bear
in mind that the worst-case lookup time is as slow as an unsuccessful search.

In a second experiment, randomly chosen keys were inserted into an empty table with 2 · 107

cells as long as possible for the cuckoo hashing variants with two hash functions. An overall time
bound Kn for some constant K = K(ε) was fixed beforehand. This gives estimates on the maximal
possible space utilization for a given d (Table 3). The experiment shows that cuckoo-lp packs the
keys more tightly than cuckoo-block at least in the static case and for sets of the size considered
here. For comparison, we have listed the bounds on ε for a given d that result from numerically
optimizing with bound (2) and from applying Theorem 1.

d cuckoo-lp cuckoo-block A B d cuckoo-lp cuckoo-block A B
2 0.038394 0.115584 0.535156 0.7358 7 0.000178 0.003828 0.022396 0.1586
3 0.007117 0.043228 0.208261 0.5413 8 0.000113 0.002393 0.014370 0.1167
4 0.001975 0.02061 0.105351 0.3983 9 0.000076 0.001551 0.009402 0.0859
5 0.000724 0.01102 0.059569 0.2931 10 0.000062 0.001024 0.006234 0.0632
6 0.000332 0.006375 0.035834 0.2156 11 0.000048 0.000686 0.004176 0.0465

Columns labeled with A denote the smallest ε satisfiying the relation (2) and columns labeled with B denote the
smallest ε satisfying the conclusion of Lemma 1.

Table 3: Smallest ε for given d; n ≈ 2 · 107

23

	Introduction: Bounded Balanced Allocation, d-Orientability, and Blocked Cuckoo Hashing
	Background and related work

	Detailed Overview
	The Static Case
	Updates: The Cuckoo Insertion Procedure
	Sharing Fully Random Hash Functions

	Analysis for the Static Case
	The Expected Insertion Time
	Some Inequalities
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 4
	Experiments

